કણની સ્થિતિઉર્જા અંતર $x$ સાથે $U\, = \,\frac{{A\sqrt x }}{{{x^2} + B}}$ મુજબ બદલાય છે. જ્યાં $A$ અને $B$ પરિમાણ ધરાવતા અચળાંક છે. તો $A/B$ નું પારિમાણિક સૂત્ર શું થાય?

  • A

    ${M^2}{L^1}{T^{ - 2}}$

  • B

    ${M^1}{L^{3/2}}{T^{ - 2}}$

  • C

    ${M^0}{L^{1/5}}{T^{ - 3}}$

  • D

    ${M^2}{L^{2/2}}{T^{ - 3}}$

Similar Questions

કોઇ પદ્ધતિ માં પ્રકાશનો વેગ $(c)$, ગુરુત્વાકર્ષણ અચળાંક $(G)$ અને પ્લાન્ક અચળાંક $(h)$ ને મૂળભૂત એકમો તરીકે લીધેલા છે. તો આ નવી પદ્ધતિ મુજબ જડત્વની ચાકમાત્રાનું પરિમાણિક સૂત્ર શુ થાય?

આઇન્સ્ટાઇનના પ્રખ્યાત સાપેક્ષવાદને આધારે દળ $(m)$ એ ઊર્જા $(E)$ સાથે $E = mc^2$ સંબંધથી સંકળાયેલ છે.

જ્યાં $c =$ શૂન્યાવકાશમાં પ્રકાશનો વેગ છે. ન્યુકિલયર ઊર્જાનું મૂલ્ય સૂક્ષ્મ હોય અને તે $Mev$ માં મપાય છે. જ્યાં $1\,MeV = 1.6\times 10^{-13}\,J$ ; જેમાં દ્રવ્યમાન (એટોમિક માસ યુનિટ) $amu$ માં મપાય છે તથા $1\,u = 1.67 \times 10^{-27}\, kg$.

$(a)$  $1\,u = 931.5\, MeV$ મેળવો.

$(b)$ એક વિધાર્થીએ $1\,u = 931.5\, MeV$ લખ્યો છે જે પારિમાણિક દૃષ્ટિએ ખોટો હોવાનું શિક્ષકે કહ્યું છે તો સાચો સંબંધ લખો.

મુદ્રણની ઘણી ત્રુટિઓ ધરાવતાં એક પુસ્તકમાં આવર્તગતિ કરતાં એક કણના સ્થાનાંતરનાં ચાર જુદાં જુદાં સૂત્રો આપેલ છે :

$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$

$(b)\;y=a \sin v t$

$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$

$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$

( $a =$ કણનું મહત્તમ સ્થાનાંતર, $v =$ કણની ઝડપ, $T =$ આવર્તકાળ ) પરિમાણને આધારે ખોટાં સૂત્રોને નાબૂદ કરો.

$CGS $ એકમ પદ્ધતિમાં લાકડાની ઘનતા $0.5\, g/cc$ છે. તેને અનુરૂપ $MKS$ એકમ પદ્ધતિમાં તેનું મૂલ્ય શોધો.

માર્શિયન પધ્ધતિમાં બળ $(F)$, પ્રવેગ $(A)$ અને સમય $(T)$ ને મૂળભૂત રાશિ લેવામાં આવે તો માર્શિયન પધ્ધતિમાં લંબાઇનું પારિમાણિક સૂત્ર શું થાય?